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Abstract 
In this work, we focus on development of solution for initial value problems of third order ordinary differential equations 

using a new class of constructed orthogonal polynomial of weight function 𝑤(𝑥) = 𝑥 valid in the interval [0,1],as basis 

function for the development of continuous hybrid scheme in a collocation and interpolation technique. The method was 

analyzed to investigate the basic properties, from the findings it shows that the method is accurate and convergent. Three 

examples were solved, the results obtained when compared with existing method are favourable. 
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1 Introduction 

 

Initial Value Problems (IVPs) of third order ordinary differential equations (ODEs) of the form 

 𝑦 ,,, = 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′); 𝑦(𝑎) = 𝛼, 𝑦′(𝑎) = 𝛽, 𝑦′′(𝑎) = 𝛾 (1) 

 

where 𝑓 is continuous in [𝑎, 𝑏] arises in many area of physical problems. 

Some of these problems have no analytical solution, thereby numerical schemes are developed to 

solve the problems. Milne (1953), proposed Block method for ODEs. Many researchers used 

different orthogonal polynomials as the basis function to solve the problems numerically. Chebyshev 

orthogonal polynomial was used by Lancsos(1983)also Tanner (1979) and 

Dahlguist (1979). Adeniyi, Alabi and Folaranmi (2008), Adeyefa, Akinola, Folaranmi and Owolabi 

(2016), Joseph, Adeniyi and Adeyefa(2018), all of these researchers constructed orthogonal 

polynomials in certain interval for different weight functions. In this work, an orthogonal polynomial 

constructed for the interval [0,1] with respect to the  
 weight function 𝑤(𝑥)  = 𝑥 is adopted to solve third order ODEs for the 

 Initial Value Problem (1). 
 

 

2 Construction of Orthogonal Polynomials 
 

Let {𝜙𝑛(𝑥)} be a class of orthogonal polynomials defined by 

 𝜙𝑛(𝑥) =∑  

𝑛

𝑟=0

𝐶𝑟
(𝑛)
𝑥𝑟 (2) 

The required conditions are as follows: 

 

𝜙𝑛(1)  = 1
 

 
(3) 

 < 𝜙𝑚(𝑥), 𝜙𝑛(𝑥) >  = 0,  𝑚 ≠ 𝑛
 

 

(4) 

This class of orthogonal polynomials valid in the interval [0,1] and weight function 

𝑤(𝑥) = 𝑥. 
Let 𝑤(𝑥) = 𝑥 and [𝑎, 𝑏] = [0,1] in (2) - (4).  
when 𝑛 = 0, we have  
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𝜙0(𝑥) = 𝐶0
(0)
  and 

𝜙0(1) = 1 = 𝐶0
(0)

 giving 𝜙0(𝑥) = 1 

For 𝑛 = 1, we have 

𝜙1(𝑥) = 𝐶0
(1)
+ 𝐶1

(1)
𝑥 

 ∴  𝜙1(1) = 𝐶0
(1)
+ 𝐶1

(1)
= 1 (5) 

⟨𝜙0(𝑥), 𝜙1(𝑥)⟩ = ∫  
1

0

𝑥(𝐶0
(1)
+ 𝐶1

(1)
𝑥)𝑑𝑥 = 0 

That is, 

 
1

2
𝐶0
(1)
+
1

3
𝐶1
(1)
= 0 (6) 

 

The solution of (5)-(6) yields 

𝐶0
(1)
= −2,  𝐶1

(1)
= 3 

Hence, 

𝜙1(𝑥) = −2 + 3𝑥  or  𝜙1(𝑥) = 3𝑥 − 2 

For 𝑛 = 2, we have 

𝜙2(𝑥) = 𝐶0
(2)
+ 𝐶1

(2)
𝑥 + 𝐶2

(2)
𝑥2 

 ∴  𝜙2(1) = 𝐶0
(2)
+ 𝐶1

(2)
+ 𝐶2

(2)
= 1 (7) 

 < 𝜙0(𝑥), 𝜙2(𝑥) >=
1

2
𝐶0
(2)
+
1

3
𝐶1
(2)
+
1

4
𝐶2
(2)
= 0 (8) 

 < 𝜙0(𝑥), 𝜙2(𝑥) >=
1

12
𝐶1
(2)
+
1

10
𝐶2
(2)
= 0 (9) 

From these equations, we get 

𝐶0
(2)
= 3,  𝐶1

(2)
= −12,  𝐶2

(2)
= 10 

Hence, 

𝜙2(𝑥) = 3 − 12𝑥 + 10𝑥
2 

 

Similarly, we obtain more polynomials to give the following collection: 

 

𝜙0(𝑥) = 1
𝜙1(𝑥) = 3𝑥 − 2

𝜙2(𝑥) = 10𝑥2 − 12𝑥 + 3

𝜙3(𝑥) = 35𝑥3 − 60𝑥2 + 30𝑥 − 4

𝜙4(𝑥) = 126𝑥4 − 280𝑥3 + 210𝑥2 − 60𝑥 + 5

𝜙5(𝑥) = 462𝑥5 − 1260𝑥4 + 1260𝑥3 − 560𝑥2 + 105𝑥 − 6

𝜙6(𝑥) = 1716𝑥6 − 5544𝑥5 + 6930𝑥4 − 4200𝑥3 + 1260𝑥2 − 168𝑥 + 7

𝜙7(𝑥) = 6435𝑥7 − 24024𝑥6 + 36036𝑥5 + 27720𝑥4 + 11550𝑥3 − 2520𝑥2 + 252𝑥 − 8}
 
 
 
 

 
 
 
 

 
(10

) 

 

2.1 Two-step Method with 𝒙
𝒏+

𝟐

𝟑

 as the Off-step Point 

The analytical solution of (1) is approximated via experimental solution of the form: 

 𝑌(𝑥) = ∑  

𝑟+𝑠−1

𝑗=0

𝑎𝑗𝜙𝑗(𝑥) (11) 

where 𝑥 ∈ [𝑎, 𝑏], 𝑟 and 𝑠 are the number of collocation and interpolation points respectively. 

The function 𝜙𝑗(𝑥) is the 𝑗th  degree orthogonal polynomial valid in the range of integration of 

[𝑎, 𝑏]. The third derivative of (11) is given by 



 𝑦′′′(𝑥) = ∑  

𝑟+𝑠−1

𝑗=0

𝑎𝑗𝜙𝑗
′′′(𝑥) = 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′) (12) 

To estimate the solution of problem (1), we interpolation at least three times. Equation (11) is 

interpolated at (𝑥𝑛 + 𝑠) points, and equation (12) is collocated at (𝑥𝑛 + 𝑟) points, yielding a system 

of equations to be solved using the Gaussian elimination method. 

We will use hybrid approach to apply this concept. 

Here, let 𝑥
𝑛+

2

3

 be the off-step point. Equation (11) is interpolated at 𝑥 = 𝑥𝑛+𝑠, 𝑠 = 0,
2

3
 and 1; (12) is 

collocated at 𝑥 = 𝑥𝑛+𝑟 , 𝑟 = 0,
2

3
1 and 2. This leads to the system of equations: 

 

 

[
 
 
 
 
 
 
 
 
1 −5 25 −129 681 −3653 19825

1 −3
73

9

−593

27

1627

27

−13555

81

11732

25
1 −2 3 −4 5 −6 7
0 0 0 210 −4704 65520 −730080

0 0 0 210 −2688 20720
−375680

3
0 0 0 210 −1680 7560 −25200
0 0 0 210 1344 5040 14400 ]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑦𝑛
𝑦
𝑛+

2
3

𝑦𝑛+1
ℎ3𝑓𝑛
ℎ3𝑓

𝑛+
2
3

ℎ3𝑓𝑛+1
ℎ3𝑓𝑛+2 ]

 
 
 
 
 
 
 
 

 (13) 

 

Solving system (12) to obtain the values of the unknown parameters 𝑎𝑗 , 𝑗 = 0(1)6 yielded: 

 

 

𝑎0 =
13

12
𝑦𝑛 −

21

4
𝑦
𝑛+

2
3
+
31

6
𝑦𝑛+1 +

56ℎ3

6051
𝑓𝑛 +

173ℎ3

2366
𝑓
𝑛+

2
3
+
593ℎ3

4656
𝑓𝑛+1 +

35ℎ3

6892
𝑓𝑛+2

𝑎1 =
23

30
𝑦𝑛 −

33

10
𝑦
𝑛+

2
3
+
38

15
𝑦𝑛+1 +

27ℎ3

3238
𝑓𝑛 +

173ℎ3

4746
𝑓
𝑛+

2
3
+
227ℎ3

1843
𝑓𝑛+1 +

53ℎ3

8667
𝑓𝑛+2

𝑎2 =
3

20
𝑦𝑛 −

9

20
𝑦
𝑛+

2
3
+
3

10
𝑦𝑛+1 +

110ℎ3

33159
𝑓𝑛 −

34ℎ3

4863
𝑓
𝑛+

2
3
+
31ℎ3

613
𝑓𝑛+1 +

13ℎ3

3336
𝑓𝑛+2

𝑎3 = ℎ
3 (

29

41580
𝑓𝑛 −

17

3080
𝑓
𝑛+

2
3
+

4

495
𝑓𝑛+1 +

25

16632
𝑓𝑛+2)

𝑎4 = ℎ
3 (

1

38016
𝑓𝑛 −

1

19712
𝑓
𝑛+

2
3
−

1

3168
𝑓𝑛+1 +

13

38226
𝑓𝑛+2)

𝑎5 = −ℎ
3 (

6

23374
𝑓𝑛 −

9

45760
𝑓
𝑛+

2
3
+

19

90090
𝑓𝑛+1 −

1

250685
𝑓𝑛+2)

𝑎6 = −ℎ
3 (

1

274560
𝑓𝑛 −

3

183040
𝑓
𝑛+

2
3
+

1

68640
𝑓𝑛+1 −

1

549120
𝑓𝑛+2) }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (14) 

 

Substituting (14) in (11) gives a continuous implicit two-step method in the form 

 

𝑦‾(𝑥) =∑  

1

𝑗=0

𝛼𝑗(𝑥)𝑦𝑛+𝑗 + 𝛼2
3
(𝑥)𝑦

𝑛+
2
3
+ ℎ3 (∑  

2

𝑗=0

 𝛽𝑗(𝑥)𝑓𝑛+𝑗 + 𝛽2
3
(𝑥)𝑓

𝑛+
2
3
) 

where 𝛼𝑗(𝑥) and 𝛽𝑗(𝑥) are continuous coefficients. From (15) the parameters 𝛼𝑗(𝑥) 

and 𝛽𝑗(𝑥) are given by: 

(15

) 



 

𝛼0(𝑡) =
3

2
𝑡2 +

𝑡

2

𝛼2
3
(𝑡) =  −

9𝑡2

2
−
9𝑡

2

𝛼1(𝑡) = 3𝑡2 + 4𝑡 + 1

𝛽0(𝑡) =  −ℎ3 (
𝑡6

160
−
𝑡5

120
−
𝑡4

96
+

𝑡3

235058424339189180

−
43𝑡2

6480
−
2260𝑡

915301
+

1

300349807825007740
)

𝛽2
3
(𝑡) = ℎ3 (

9𝑡6

320
+

𝑡5

12688236664456307
−
9𝑡4

64
+
16748472397082323

163
+
29𝑡2

180
+
7𝑡

144

+
11866908084007885

14
)

𝛽1(𝑡) =  −ℎ3 (
𝑡6

40
−
𝑡5

60
−
𝑡4

8
+
𝑡3

6
−
22𝑡2

405
−
247𝑡

57163
+

𝑡3

30264189495929732
)

𝛽2(𝑡) = ℎ3 (
𝑡6

320
+
𝑡5

120
+
𝑡4

192
−

1

3695570313586332200

+
18𝑡2

116639
+

18𝑡

116639
−

1

373665233501228290
)

 
(16

) 

 

By evaluating (15) at 𝑥𝑛+2, the main method is obtained as 

 

𝑦𝑛+2 = 2𝑦𝑛 − 9𝑦𝑛+2
3
+ 8𝑦𝑛+1

+ ℎ3 (
7

324
𝑓𝑛 +

7

72
𝑓
𝑛+

2
3
+
25

81
𝑓𝑛+1 +

11

648
𝑓𝑛+2) 

(17) 

 

Differentiate (15), to get the continuous coefficients: 

 

 

 

𝛼0
′ (𝑡) =

3𝑡 +
1
2

ℎ

𝛼2
3
(𝑡) =

− (9𝑡 +
9
2)

ℎ

𝛼1
′ (𝑡) =

(6𝑡 + 4)

ℎ

𝛽0
′(𝑡) = −ℎ2 (

3𝑡5

80
−
𝑡4

24
−
𝑡3

24
+

𝑡2

78352808113063056
−
43𝑡

3240
−

2260

9153301
)

𝛽2
3

′(𝑡) = ℎ2 (
27𝑡5

760
+
𝑡4

24
−
9𝑡3

16
+

29𝑡

558282412360774700
+
7

90
+

7

144
)

𝛽1
′(𝑡) = ℎ2 (

−(3𝑡5)

20
−
𝑡4

12
+
𝑡3

2
+
𝑡2

2
+
2201759380413025𝑡

20266198323167232
+
9121851463349

9153301
)

𝛽2
′(𝑡) = ℎ2 (

3𝑡5

160
+
𝑡4

24
+
𝑡3

48
−

𝑡2

1231856771195444
+

35𝑡

113399
+

18

116639
)

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
(18

) 



 

The second derivatives of continuous functions (15) yield the following coefficient 

 

𝛼0
′′(𝑡) =

3

ℎ2

𝛼2
3

′′(𝑡) =
−9

ℎ2

𝛼1
′′(𝑡) =

6

ℎ2

𝛽0
′′(𝑡) = −ℎ (

3𝑡4

16
−
𝑡3

6
−
𝑡2

8
+

𝑡

39176404056531528
−

43

3240
)

𝛽2
3

′′(𝑡) = ℎ (
27𝑡4

32
+

𝑡3

634411833222815230
−
27𝑡2

16
+

𝑡

2791412066180387300
+
29

90
)

𝛽1
′′(𝑡) = −ℎ (

3𝑡4

4
−
𝑡3

3
+
3𝑡2

2
+ 𝑡 +

44

405
)

𝛽2
′′(𝑡) = ℎ (

3𝑡4

32
+
𝑡3

6
+
𝑡2

16
−

𝑡

615928385597721980
+

35

113399
)

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
(19

) 

 

The additional methods to be coupled with the main method (17) are obtained by evaluating the first 

and second derivatives of (15) at 𝑥𝑛, 𝑥
𝑛+

2

3

, 𝑥𝑛+1 and 𝑥𝑛+2 respectively to obtain: 

 

ℎ𝑦𝑛
′ +

5

2
𝑦𝑛 −

9

2
𝑦
𝑛+

2
3
+ 2𝑦𝑛+1

= ℎ3 (
173𝑓𝑛
6480

+

173𝑓
𝑛+

2
3

1440
−
61𝑓𝑛+1
1620

+
5𝑓𝑛+2
2592

) 

(20) 

 

ℎ𝑦
𝑛+

2
3

′ +
𝑦𝑛
2
+
3

2
𝑦
𝑛+

2
3
− 2𝑦𝑛+1

= ℎ3 (
−11𝑓𝑛
3888

−

167𝑓
𝑛+

2
3

4320
−
23𝑓𝑛+1
4860

−
29𝑓𝑛+2
102502

) 

(21) 

 

ℎ𝑦𝑛+1
′ −

𝑦𝑛
2
+
9

2
𝑦
𝑛+

2
3
− 4𝑦𝑛+1

= ℎ3 (
2260𝑓𝑛
915301

+

7𝑓
𝑛+

2
3

144
+
247𝑓𝑛+1
57163

+
18𝑓𝑛+2
116639

) 

(22) 

 

ℎ𝑦𝑛+2
′ −

7

2
𝑦𝑛 +

27

2
𝑦
𝑛+

2
3
− 10𝑦𝑛+1

= ℎ3 (
133𝑓𝑛
2160

−

1312𝑓
𝑛+

2
3

57251
+
95𝑓𝑛+1
108

+
353𝑓𝑛+2
4320

) 

(23) 

 

ℎ2𝑦𝑛
′′ − 3𝑦𝑛 + 9𝑦𝑛+2

3
− 6𝑦𝑛+1

= ℎ3 (−
527𝑓𝑛
2441

−

751𝑓
𝑛+

2
3

1440
+
311𝑓𝑛+1
1620

−
131𝑓𝑛+2
12960

) 
(24) 



 

ℎ2𝑦
𝑛+

2
3

′′ − 3𝑦𝑛 + 9𝑦𝑛+2
3
− 6𝑦𝑛+1

= ℎ3 (
121𝑓𝑛
6480

+

209𝑓
𝑛+

2
3

1440
−
89𝑓𝑛+1
1620

+
77𝑓𝑛+2
34411

) 
(25) 

 

ℎ2𝑦𝑛+1
′′ − 3𝑦𝑛 + 9𝑦𝑛+2

3
− 6𝑦𝑛+1

= ℎ3 (
43𝑓𝑛
3240

+

29𝑓
𝑛+

2
3

90
+
44𝑓𝑛+1
405

+
35𝑓𝑛+2
113399

) 
(26) 

 

ℎ2𝑦𝑛+2
′′ − 3𝑦𝑛 + 9𝑦𝑛+2

3
− 6𝑦𝑛+1

= ℎ3 (
761𝑓𝑛
6480

−

751𝑓
𝑛+

2
3

1440
−
1115𝑓𝑛+1
731

+
469𝑓𝑛+2
1451

) 
(27) 

 

Equations (17) and (20) - (27) are solved using Shampine and Watts (1969) block formula defined as 

 𝐴𝑦𝑚 = ℎ𝐵𝐹(𝑦𝑚) + 𝐸𝑦𝑛 + ℎ𝐷𝑓𝑛 (28) 

 

𝐴 =

(

 
 
 
 
 
 
 
 
 
 

9 −8 1 0 0 0 0 0 0

−
9

2
2 0 0 0 0 0 0 0

3

2
−2 0 1 0 0 0 0 0

9

2
−4 0 0 1 0 0 0 0

27

2
−10 0 0 0 1 0 0 0

9 −6 0 0 0 0 0 0 0
9 −6 0 0 0 0 1 0 0
9 −6 0 0 0 0 0 1 0
9 −6 0 0 0 0 0 0 1)

 
 
 
 
 
 
 
 
 
 

 𝐵

=

(

 
 
 
 
 
 
 

7/72 25/81 11/648
173/1440 −61/1620 5/2592
−167/4320 23/4860 −29/102502
7/144 247/57163 18/116639

−1312/57251 95/108 353/4320
−751/1440 311/1620 −131/12960
209/1440 −89/1620 77/34411
29/90 44/405 35/113399

−751/1440 1115/731 469/1451 )

 
 
 
 
 
 
 

 



𝐷 =

(

 
 
 
 
 
 
 

7/324
173/6480
−11/3888

2260/915301
133/2160
−527/2441
121/6480
43/3240
761/6480 )

 
 
 
 
 
 
 

 𝐸 =

(

 
 
 
 
 
 

2 0 0
−5/2 −1 0
−1/2 0 0
1/2 0 0
7/2 0 0
3 0 −1
3 0 0
3 0 0
3 0 0 )

 
 
 
 
 
 

 

 

Substituting A, B, D and E into equation (28) the following equations are obtained: 

 𝑦
𝑛+

2
3
= 𝑦𝑛 +

2

3
𝑦𝑛
′ +

2

9
𝑦𝑛
′′ +

22

729
𝑓𝑛 +

29

810
𝑓
𝑛+

2
3
−

64

3645
𝑓𝑛+1 +

7

7290
𝑓𝑛+2 (29) 

 𝑦𝑛+1 = 𝑦𝑛 + 𝑦𝑛
′ +

1

2
𝑦𝑛
′′ +

13

160
𝑓𝑛 +

9

64
𝑓
𝑛+

2
3
−

7

120
𝑓𝑛+1 +

1

320
𝑓𝑛+2 (30) 

 𝑦𝑛+2 = 𝑦𝑛 + 2𝑦𝑛
′ + 2𝑦𝑛

′′ +
2

5
𝑓𝑛 +

9

10
𝑓
𝑛+

2
3
+
1

30
𝑓𝑛+2 (31) 

 𝑦
𝑛+

2
3

′ = 𝑦𝑛
′ +

2

3
𝑦𝑛
′′ +

139

1215
𝑓𝑛 +

17

90
𝑓
𝑛+

2
3
−
104

1215
𝑓𝑛+1 +

11

2430
𝑓𝑛+2 (32) 

 𝑦𝑛+1
′ = 𝑦𝑛

′ + 𝑦𝑛
𝑛 +

23

120
𝑓𝑛 +

9

20
𝑓
𝑛+

2
3
−
3

20
𝑓𝑛+1 +

1

120
𝑓𝑛+2 (33) 

 𝑦𝑛+2
′ = 𝑦𝑛

′ + 2𝑦𝑛
′′ +

7

15
𝑓𝑛 +

9

10
𝑓
𝑛+

2
3
+
8

15
𝑓𝑛+1 +

1

10
𝑓𝑛+2 (34) 

 𝑦
𝑛+

2
3

′′ = 𝑦𝑛
′′ +

19

81
𝑓𝑛 +

2

3
𝑓
𝑛+

2
3
−
20

81
𝑓𝑛+1 +

1

81
𝑓𝑛+2 (35) 

 𝑦𝑛+1
′′ = 𝑦𝑛

′′ +
11

48
𝑓𝑛 +

27

32
𝑓
𝑛+

2
3
−
1

12
𝑓𝑛+1 +

1

96
𝑓𝑛+2 (36) 

 𝑦𝑛+2
′′ = 𝑦𝑛

′′ +
1

3
𝑓𝑛 +

4

3
𝑓𝑛+1 +

1

3
𝑓𝑛+2 (37) 

 

2.2 Analysis of the Methods 
The basic properties are order, error constant, zero stability and consistency. 

The main methods derived are discrete schemes belonging to the class of LMMs of the form: 

 ∑ 

𝑘

𝑗=0

𝛼𝑗𝑦𝑛+𝑗 = ℎ
3∑ 

𝑘

𝑗=0

𝛽𝑗𝑓𝑛+𝑗 (38) 

 

Following Futunla (1988) and Lambert (1973), we define the Local Truncation Error (LTE) 

associated with (38) by difference operator; 

 𝐿[𝑦(𝑥): ℎ] =∑  

𝑘

𝑗=0

[𝛼𝑗𝑦(𝑥𝑛 + 𝑗ℎ) − ℎ
3𝛽𝑗𝑓(𝑥𝑛 + 𝑗ℎ)] (39) 

 

where 𝑦(𝑥) is an arbitrary function, continuously differentiable on [𝑎, 𝑏]. Expanding (3) in Taylor's 

Series about the point 𝑥, we obtain the expression 

 𝐿[𝑦(𝑥): ℎ] = 𝑐𝑜𝑦(𝑥) + 𝑐1ℎ𝑦
′(𝑥) + ⋯𝑐𝑝+3ℎ

𝑝+3𝑦𝑝+3(𝑥) (40) 

where the 𝑐𝑜 , 𝑐1, 𝑐2…𝑐𝑝…𝑐𝑝+3 are obtained 



 𝑐0 =∑  

𝑘

𝑗=0

 𝛼𝑗 (41) 

 𝑐1 =∑  

𝑘

𝑗=1

 𝑗𝛼𝑗 (42) 

 𝑐3 =
1

3!
∑  

𝑘

𝑗=1

  𝑗3𝛼𝑗 (43) 

 𝑐𝑞 =
1

𝑞!
[∑  

𝑘

𝑗=1

  𝑗𝑞𝛼𝑗 − 𝑞(𝑞 − 1)(𝑞 − 2)(𝑞 − 3)∑  

𝑘

𝑗=1

 𝛽𝑗𝑗
𝑞−3] (44) 

 

In the sense of Lambert (1973), equation (38) is of order 𝑝 if 𝑐𝑜 = 𝑐1 = 𝑐2 = 𝑐2 = ⋯𝑐𝑝 = 𝑐𝑝+1 =

𝑐𝑝+2 = 0 and 𝑐𝑝+3 ≠ 0. The 𝑐𝑝+3 ≠ 0 is called the error constant and 𝑐p+3ℎ
p+3𝑦p+3(𝑥𝑛) is the 

Principal Local truncation error at the point 𝑥𝑛. The equation (17) is of order p = 4 and error 

constants 𝐶𝑝+3 = −
31

29160
 

 

2.2.1 Zero stability 

The LMM (1) is said to be Zero-stable if no root of the first characteristic polynomial 𝜌(𝑅) has 

modulus greater than one and if and only if every root of modulus one has multiplicity not greater 

than the order of the differential equation. 

 

2.2.2 Consistency 

The LMM is said to be consistent if it has order 𝑝 ≥ 1 and the first and second characteristic 

polynomials which are defined respectively, as 

 

 𝜌(𝑧) =∑  

𝑘

𝑗=0

𝛼𝑗𝑧
𝑗  (45) 

and 

 σ(𝑧) =∑  

𝑘

𝑗=0

𝛽𝑗𝑧
𝑗 (46) 

 

where 𝑧 is the principal root, satisfy the following conditions: 

 ∑ 

𝑘

𝑗=0

 𝛼𝑗 = 0 (47) 

 𝜌(1) = 𝜌′(1) = 0 (48) 

And 

 𝜌′′′(1) = 3 ⋅ 𝜎(1) (49) 

(Henrichi, 1962) 

 

The scheme (18) is of order 𝜌 = 4 > 1 and they have been investigated to satisfy conditions (I)-(III) 

of Definition (47) -(49). Hence, the scheme is consistent. 

 

 

 



2.2.3 Convergence 

According to the theorem of Dahlguist, the necessary and sufficient condition for an LMM to be 

convergent, is that, it is consistent and zero-stable. 

The methods satisfy the two conditions stated in Definition (47) −(49) and hence the method is 

convergent. 

 

2.2.4 Zero stability of the Method. 

To analyze the Zero-stability of the method, equations (29)-(37) is represented in block form below: 

𝐴0𝑦𝑚 = ℎ𝐵𝐹(𝑦𝑚) + 𝐴
′𝑦𝑛ℎ𝐷𝑓𝑛 

where h is a fixed mesh size within a block. 

The zero stability of equations (29)-(37) gives 

𝐴0 = [
1 0 0
0 1 0
0 0 1

] 

𝐴𝑟 = [
0 0 1
0 0 1
0 0 1

] 

𝐵 = [

29/810 −64/3645 7/7290
9/64 −7/120 1/320
9/10 0 1/30

] 

𝐷 = [

0 0 22/729
0 0 13/160
0 0 2/5

] 

 

The first characteristic polynomial of the block hybrid method is given by 

 𝜌(𝑅) = det (𝑅𝐴0 − 𝐴′) (50) 

Substituting 𝐴0 and 𝐴′ in equation (50) and solving for R, the values of R are obtained as 0 and 1. 

According to Fatunla (1988,1991), the block method equations (29)-(37) are zero-stable, since from 

(50), 𝜌(𝑅) = 0, satisfy |𝑅𝑗| ≤ 1, 𝑗 = 1 and for those roots with |𝑅𝑗| = 1, the multiplicity does not 

exceed three. 

 

2.3 Region of Absolute Stability (RAS) 

For the Two-step with Off-step Point 
2

3
, we have 

𝑦𝑛+2 + 9𝑦𝑛+2
3
− 8𝑦𝑛+1 − 2𝑦𝑛  =

ℎ3

648
(14𝑓𝑛 + 63𝑓𝑛+3

3
+ 200𝑓𝑛+1 + 11𝑓𝑛+2)

ℎ‾(𝑧)  =
648 (𝑧2 + 9𝑧

2
3 − 8𝑧 − 2)

63𝑧
2
3 + 200𝑧 + 11𝑧2 + 14

ℎ‾(𝜃)  =
648𝑒𝑖2𝜃 + 9𝑒𝑖

2
3
𝜃 − 8𝑒𝑖𝜃 − 2

11𝑒𝑖2𝜃 + 63𝑒𝑖
2
3
𝜃 + 200𝑒𝑖𝜃 + 14

 

The RAS is shown in the figure below 



                            
 

Figure 1: Region of Absolute Stability for Two-step with Off-step Point 
2

3
 

 

3 Application of the Method 
 

Three problems characterized by different features will be considered in this section. 

 

Problem 1 

The highly nonlinear problem 

 

𝑦′′′ + 𝑒−𝑦 − 3𝑒−2𝑦 + 2𝑒−3𝑦 = 0 

𝑦(0) = ln 2, 𝑦′(0) =
1

2
, 𝑦′′(0) =

1

4
 

sourced from Muhammed (2016) whose analytic solution is 
𝑦(𝑥) = ln (𝑒𝑥 + 1)

 was considered with ℎ = 0.1,
 

 

Problem 2 
The nonlinear application problem called Blasius Equation 

2𝑦′′′ + 𝑦𝑦′′ = 0

𝑦(0) = 0,  𝑦′(0) = 0,  𝑦′′(0) = 1
 

and sourced from Adesanya et al (2014) was solved here with ℎ = 0.1. 

 

Problem 3 

An Application Problem (Nonlinear Genesio Equation) 

Considered, the nonlinear chaotic system from Genesio and Tesi (1992) 

𝑥′′′′(𝑡) + 𝐴𝑥′′(𝑡) + 𝐵𝑥′(𝑡) = 𝑥2(𝑡) − 𝐶𝑥(𝑡)

𝑥(0) = 0.2,  𝑥′(0) = −0.3,  𝑥𝑛(0) = 0.1,  𝑡 ∈ [0,1]
 

where 𝐴 = 1.2, 𝐵 = 2.29 and 𝐶 = 6 are positive constants that satisfied 𝐴𝐵 < 𝐶 for the existence of 

the solution. 

 

3 Tables of Results 

 



Table 1: Results for Problem 1 

x Exact solution Two-steps with 𝑣 =
2

3
 

0.1 0.744396660073572 0.744396660068558 

0.2 0.798138869381592 0.798138869344556 

0.3 0.854355244468526 0.854355244286741 

0.4 0.913015252399952 0.913015251874836 

0.5 0.974076984180107 0.974076982907236 

0.6 1.037487950485890 1.037487947917230 

0.7 1.103186048885460 1.103186044201130 

0.8 1.171100665947780 1.171100658162400 

0.9 1.241153874732090 1.241153862586050 

1.0 1.313261686336555 1.313261669600100 

 

Table 2: Results for Problem 2 

 

x Analytical solution two-step method with 𝑣 =
2

3
 

0.1 0.0049999551874560 0.004999958347116 

0.2 0.0199986590802381 0.019998666938153 

0.3 0.04498987410259470 0.044989879952218 

0.4 0.0799573773516761 0.079957379380653 

0.5 0.1248700476465370 0.124870060961250 

0.6 0.179677126361217 0.179677148374987 

0.7 0.2443036129003850 0.244303630177998 

0.8 0.3186459794646740 0.318646031552947 

0.9 0.4025686062131340 0.402568655792802 

10 0.4959003376293370 0.495900435482723 

 

 

 

 

 

 

 

 



Table 3: Results for Problem 3 

 

X Analytical solution 
two-step method with 𝑣 =

2

3
 

as the Off-step point 

0.1 0.170440346269364 0.170440346869070 

0.2 0.141582173138664 0.141582171130925 

0.3 0.113282963581607 0.113282958227538 

0.4 0.085554524922736 0.085554520377859 

0.5 0.058543682864593 0.058543674213629 

0.6 0.032510877478247 0.032510862344549 

0.7 0.007806854082744 0.007806836744866 

0.8 −0.015152336804258 −0.015152348568936 

0.9 −0.035911645118586 −0.035911639463907 

10 −0.054004107797261 −0.054004072464382 

 

4 Tables of Errors 

 

Table 4: Error for Problem 1 

 

x Error in Anake (2013) Two-steps 𝑣 =
2

3
 

0.1 1.608800 × 10−9 5.014000 × 10−12 

0.2 1.038700 × 10−8 3.703600 × 10−11 

0.3 2.957200 × 10−8 1.817850 × 10−10 

0.4 2.314700 × 10−7 5.251160 × 10−10 

0.5 4.542000 × 10−7 1.272871 × 10−9 

0.6 1.474600 × 10−6 2.568660 × 10−9 

0.7 2.873400 × 10−6 4.684330 × 10−9 

0.8 4.682600 × 10−6 7.785380 × 10−9 

0.9 6.921700 × 10−6 1.214604 × 10−8 

1.0 9.597400 × 10−6 1.673646 × 10−8 

Tables of Errors 

 

 

 



Table 5: Error for Problem 2 

 

X Two-steps with 𝑣 =
2

3
 Error in Anake Block Algorithm 

0.1 3.159660000 × 10−9 4.2730000 × 10−8 

0.2 7.8579149000 × 10−9 1.2075900 × 10−6 

0.3 5.849623300 × 10−9 8.6071900 × 10−6 

0.4 2.028976900 × 10−9 3.40900400 × 10−5 

0.5 1.331471300 × 10−8 9.7406800 × 10−5 

0.6 2.201377000 × 10−8 2.2571100 × 10−4 

0.7 1.727761300 × 10−8 4.5145470 × 10−4 

0.8 5.208827300 × 10−8 8.084729 × 10−4 

0.9 4.9579668000 × 10−8 1.3262207 × 10−3 

1.0 9.785338600 × 10−8 2.0220546 × 10−3 

 

 

 

 

Table 6: Error for Problem 3 

 

x Two-steps with 𝑣 =
2

3
 

0.1 5.99706000 × 10−10 

0.2 2.007739000 × 10−9 

0.3 5.35406900 × 10−9 

0.4 4.544877000 × 10−9 

0.5 8.650964000 × 10−9 

0.6 1.513369800 × 10−8 

0.7 1.7337878000 × 10−8 

0.8 1.176467800 × 10−8 

0.9 5.654679000 × 10−9 

1.0 3.533287900 × 10−8 

 

 

 



4 Conclusion 
 

Continuous hybrid scheme with off point was used with constructed orthogonal polynomials as basis 

function, developed through a collocation and interpolation technique. These method by analysis, 

were shown to be consistent and zero stable and hence convergent. Three selected problems have 

been considered to test the effectiveness and accuracy of the method. It is obvious from our table of 

results that the method is accurate and effective since the approximation closely estimate the analytic 

solution. 
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