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Abstract 

In this paper, pure sub-gradient method has been investigated and a comprehensive study of high-level research knowledge 

about the concept of sub-gradient method have been developed. This method arises as a result of in-efficiency of direct 

method and conjugate gradient method to handle large sparse optimization problems, and therefore, sub-gradient 

optimization is one of the most important topics in the field of optimization. The method has been applied effectively in 

solving concave and convex optimization problems using programing system code language, as in the case of large-scale 

practical problems in the maximization of linear and nonlinear integer programming problem. This was achieved through 

the use of its properties and algorithms to taste the efficiency for convergence in finding an optimal solution to optimization 

problems. Hence, sub-gradient methods can be employed to effectively find solutions to large sparse optimization problems 

which are too large for direct methods or conjugate gradient methods to handle.  
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1 Introduction 

This research paper is targeted on the concept of pure sub-gradient optimization method for the 

solution of linear and nonlinear constraint optimization problems, through the use of programing 

system code language. This study captured two numerical problems on which we used the methods of 

pure sub-gradient in finding solutions to the problems. 

 

2 Optimization 

This is a process of iterative procedures for finding optimal solution to an optimization problem.  

2.1 Convex set:  

Let the set 𝑆 ⊂ ℜ𝑛. Then we said that 𝑆 is a convex set if, for any 𝑥1, 𝑥2  ∈  𝑆, we have α𝑥1 +
(1 −  α)𝑥2  ∈ 𝑆, ∀𝛼 ∈  [0, 1], In geometry, this definition shows that for any two points 𝑥1, 𝑥2  ∈  𝑆, 

the line segment joining x1 and x2 is completely contained in 𝑆. It also states that 𝑆 is a path connected 

by segmented points, i.e., two arbitrary points in 𝑆 can be linked by a continuous path. This can also 

be shown by induction, that the set 𝑆 ⊂ ℜ𝑛is convex if and only if, for any 𝑥1, 𝑥2, … , 𝑥𝑚  ∈  𝑆, there 

exist 

𝑦 = ∑ α𝑖𝑥𝑖 ∈  S𝑚
𝑖=1 ,           (1.1) 

 

which is a linear combination of 𝑚 vectors. 

Where  ∑ α𝑖 =𝑚
𝑖=1 1,  𝛼𝑖 ≥  0, 𝑖 =  1,· · ·, 𝑚.     

Therefore, 𝑥 = 𝛼𝑥1, + (1 –  𝛼)𝑥2) where 𝛼 ∈  [0, 1], is called a convex combination of 𝑥1 and 𝑥2. 

While ∑ α𝑖 𝑥𝑖  𝑚
𝑖=1 is called a convex combination of 

𝑥1, 𝑥2,· · · , 𝑥𝑚, where ∑ α𝑖 =𝑚
𝑖=1  1, α𝑖 ≥  0, 𝑖 =  1,· · ·, 𝑚.  

Diagrammatically, these sets can be represented as: 

 

2.2 Concave set  

Let 𝑚, 𝑣: [0, 𝑆] → ℜ be two Lebasque integrable, monotone functions, say m decreasing and 𝑣 

increasing and set: 
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𝑀(𝑠): = ∫ 𝑚
𝑠

0
(𝜎) 𝑑𝜎 𝑎𝑛𝑑 𝑉(𝑠): =  ∫ 𝑣

𝑠

0
(𝜎) 𝑑𝜎.         (1.2) 

Obviously 𝑀 is concave and 𝑉 is convex. Furthermore, a set is said to be concave if and only if the 

complement of the set is convex. 

  

Example 1.1  

The hyper plane 𝐻 = {𝑥 ∈ ℜ𝑛 | 𝑃𝑇𝑥 = 𝛼} is a convex set, where a nonzero vector 𝑃 ∈ ℜ𝑛 is referred 

to as the normal vector to the hyper plane and α is a scalar. 

In fact, for any 𝑥1, 𝑥2 ∈ 𝐻 and each 𝜃 ∈  [0, 1], 
𝑃𝑇  [θ𝑥1  +  (1 –  θ)𝑥2]  =  𝛼,      (1.3) 

then, 

  𝑥1 +  (1 –  θ)𝑥2 ∈ 𝐻. 

Note that, in the hyper plane 𝐻 = {𝑥 ∈ ℜ𝑛 | 𝑃𝑇𝑥 = 𝛼} if 𝛼 = 0, then it can be reduced to a subspace 

of vectors that are orthogonal to 𝑃. 

Similarly, the closed half spaces  

𝐻− = {𝑥 ∈ ℜ𝑛 | 𝑃𝑇𝑥 ≤ 𝛽}  and  𝐻+ = {𝑥 ∈ ℜ𝑛| 𝑃𝑇𝑥 ≥ 𝛽}    (1.4) 

are closed convex sets. 

The open half spaces 

(Ḣ)− = {𝑥 ∈ ℜ𝑛 | 𝑃𝑇𝑥 < 𝛽}  and  (Ḣ)+ = {𝑥 ∈ ℜ𝑛| 𝑃𝑇𝑥 > 𝛽}      (1.5) 

are open convex sets. 

 

Example 1.2 

The ray 𝑆 =  {𝑥 ∈ ℜ𝑛 | 𝑥 = 𝑥0 + 𝜆𝑑, 𝜆 ≥  0} is a convex set, where 𝑑 ∈ ℜ𝑛a nonzero vector and 

𝑥0  ∈ ℜ𝑛 is a fixed point.  In fact, for any 𝑥1, 𝑥2 ∈ 𝑆 and each 𝜆 ∈  [0, 1], we have 

𝑥1  =  𝑥0  +  𝜆1𝑑,    𝑥2 =  𝑥0  + 𝜆2𝑑,          (1.6) 

where 𝜆1, 𝜆2  ∈  [0, 1].  
Hence,  

𝜆𝑥1 +  (1 –  𝜆)𝑥2 = 𝜆(𝑥0  + 𝜆1𝑑)  +  (1 –  𝜆)(𝑥0  +  𝜆2𝑑)  

=  𝑥0 + [𝜆𝜆1  +  (1 –  𝜆)𝜆2]𝑑.           (1.7) 

Since  

𝜆𝜆1 + (1 –  𝜆)𝜆2 ≥ 0, then  𝜆𝑥1 + (1 − 𝜆)𝑥2 ∈ 𝑆. 

The finite intersection of closed half spaces is 

𝑆 = {𝑥 ∈ ℜ𝑛 |𝑃𝑖
𝑇𝑥 ≤ 𝛽𝑖, 𝑖 =  1,· · ·, 𝑚}         (1.8) 

which is called a polyhedral set, where 𝑃𝑖 are nonzero vector and 𝛽𝑖 is a scalar. The polyhedral is a 

convex set. Since equality can be represented by two inequalities, the following sets are examples of 

polyhedral sets: 

𝑆 = {𝑥 ∈ ℜ𝑛 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0},         (1.9) 

𝑆 = {𝑥 ∈ ℜ𝑛 | 𝐴𝑥 ≥ 0, 𝑥 ≥ 0}.       (1.10) 

 

The intersection of two convex sets is convex, the algebraic sum of two convex sets is convex, the 

interior of a convex set is convex, and the closure of a convex set is convex. 

 

Theorem 1.1  

Let 𝑆1 and S2 be two convex sets in ℜ𝑛. Then, 

i. 𝑆1 ∩ 𝑆2 is convex;   

ii. 𝑆1 ± 𝑆2 =  {𝑥1 ± 𝑥2 |𝑥1 ∈ 𝑆1, 𝑥2 ∈ 𝑆2} is convex. 

Proof: Following the definition of convex set above, it is obvious that condition (i) is true for any 

intersection of two convex sets to be convex also. Similarly, it holds for condition (ii), that is for the 

sum or difference of two convex sets their union or difference must also be convex.  
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Theorem 1.2  

Let 𝑆 ⊂ ℜ𝑛 be a convex set. Then 

i. The interior 𝑖𝑛𝑡. 𝑆 of 𝑆 is a convex set; 

ii. The closure Ŝ of 𝑆 is a convex set. 

 

Proof: (i)  

Let 𝑥 and 𝑥′ be in 𝑖𝑛𝑡. 𝑆 and 𝑥” = 𝛼𝑥 + (1 − 𝛼) 𝑥′, 𝛼 ∈ (0, 1). 
Choose 𝛿 >  0 such that 𝐵(𝑥′, 𝛿) ⊂ 𝑆, where 𝐵(𝑥′, 𝛿) is the δ-neighborhood of x’. It is easy to see 

that  
𝑥” – 𝑥

𝑥′− 𝑥
= 1 − 𝛼.  

We know that 𝐵(𝑥”, (1 –  𝛼)𝛿) is just the set 𝛼𝑥 + (1 –  𝛼)𝐵(𝑥′, 𝛿) which is in 𝑆.  

Therefore 

𝐵(𝑥”, (1 –  𝛼)𝛿) ⊂ 𝑆 which shows that 𝑥” ∈  𝑖𝑛𝑡𝑆. 

Proof: (ii)  

Take 𝑥, 𝑥′ ∈  Ŝ. Select two sequences in 𝑆 as {𝑥𝑘} and {x′ 𝑘} converging to 𝑥 and 𝑥′ respectively. Then, 

for 𝛼 ∈  [0, 1], we have  

[𝛼𝑥𝑘  + (1 –  𝛼)x′
𝑘] − [𝛼𝑥 +  (1 −  𝛼)𝑥′]   

 = 𝛼(𝑥𝑘 –  𝑥) + (1 –  𝛼)(x′
𝑘 –  𝑥′) 

≤ 𝛼𝑥𝑘 − 𝑥 + (1 –  𝛼)x′𝑘 −  𝑥′.  (1.11) 

Taking the limit of both sides yields  

lim│
k→∞

[αxk +  (1 –  α) x′k] – [αx +  (1 –  α) x′]│ = 0,   (1.12) 

which shows that 𝛼𝑥 + (1 –  𝛼) 𝑥′ ∈ Ŝ. 

  

2.3 Concave function 

Let f be a function on a convex set S and 𝑆 ⊂ ℜ𝑛 ⟶ ℜ. Then 𝑓 is said to be concave and closed if for 

any 𝑥1, 𝑥2  ∈ 𝑆 and 𝛼 ∈ [0,1], we have that 

𝑓((1 − 𝛼)𝑥1 + 𝛼𝑥2) ≥ (1 − 𝛼)𝑓(𝑥1) + 𝛼𝑓(𝑥2),  for 𝑥1 ≠ 𝑥2   (1.13) 

We say that, 𝑓 is strictly concave if  

𝑓((1 –  𝛼)𝑥1  +  𝛼𝑥2)  >  (1 –  𝛼)𝑓(𝑥1)  +  𝛼𝑓(𝑥2).        (1.14) 

 

2.4 Convex function  

Let f be a function on a convex set S and 𝑆 ⊂ ℜ𝑛 ⟶ ℜ. Then 𝑓 is said to be concave if for any 𝑥1, 𝑥2  ∈
𝑆 and 𝛼 ∈ (0,1), we have that 

𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤ 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2),  for 𝑥1 ≠ 𝑥2  (1.15) 

We say that, 𝑓 is strictly convex if  

𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) < 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2).      (1.16) 

 

3 Differentiability of a function 

 

A function 𝑓(𝑢) is said to be differentiable at the point 𝑢, if the derivative 𝑓‘(𝑢) exists at every point 

𝑢 in its domain. And also, 𝑓 is continuously differentiable if its derivatives exist continuously over its 

domain. 

 

3.1 A Close function 

A function 𝑓: ℜ𝑛  →  ℜ ∪ {+∞} is said to be closed if it is lower semi-continuous everywhere, or if 

its epigraph is closed, or if its level sets are also closed. Consequently, the indicator function 𝐼𝑆  is 

closed if and only if 𝑆 is closed. Also, 𝑒𝑝𝑖 𝐼𝑆  =  𝑆 × ℜ+. The support function 𝜎𝑠 is closed as well.  
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3.2 Sub-differential 

The Sub-differential of a function f at 𝑥′, is the set of all sub-gradients of 𝑓 at 𝑥′ which is given by  

𝜕𝑓(𝑥′) = {𝑠: 𝑓(𝑥′) + 𝑠(𝑥 − 𝑥′) ≥ 𝑓(𝑥) Ɐ𝑥 ∈ ℜ𝑛}.      (1.17) 

Furthermore, if 𝛿𝑓(𝑥) is non-empty, then 𝑓 is said to be sub-differentiable at a point 𝑥′, which implies 

that a concave function is sub-differentiable at every point in its domain, and the sub-differential is a 

non-empty convex, closed and bounded set. Note that, a concave function is not always differentiable 

at all points in its domain but closed. 

 

3.3 Sub-gradient  

Let 𝑓: ℜ𝑛  →  ℜ be concave. The vector 𝑔 ∈ ℜ𝑛 is called a Sub-gradient of 𝑓 at 𝑥′ ∈  ℜ𝑛 if  

𝑓(𝑥′) +  𝑔(𝑥 – 𝑥′) ≥  𝑓(𝑥),   Ɐ 𝑥 ∈  ℜ𝑛.      (1.18) 

Similarly,  

𝑓(𝑥′) − 𝑓(𝑥)  ≥  〈𝑔, 𝑥 −  𝑥′〉 ,   Ɐ 𝑥 ∈  ℜ𝑛,    (1.19) 

if 𝑓(𝑥′) =  𝑔 and 𝑓(𝑥′) = 0, then it implies that 𝑔 = 0 and (0, 𝑔) ∈ 𝜕𝑓(𝑥′) Ɐ 𝑥 ∈  ℜ𝑛. 
 

3.4 Important Results  

Let 𝑢 =  (𝑢1, 𝑢2, 𝐼, 𝑢𝑛) and 𝑣 =  (𝑣1, 𝑣2, . . . , 𝑣𝑛) be two vector spaces in ℜ𝑛. Then we say that, 

i. 𝑢𝑖𝑣𝑖 ∶=  𝑃𝑛  ∑ 𝑢𝑖𝑣𝑖
𝑚
𝑖=1 , is a linear combination of independent vectors, whether they are raw or 

column vectors. 

ii. 𝑢 ≥  0 means 𝑢𝑖  ≥  0 for each 𝑖 =  1, 2, . . . 𝑛. 

iii. ||𝑢|| : =  √𝑢𝑢 – the Euclidean norm. 

iv. 𝑃𝛺(𝑢)  =  𝑎𝑟𝑔𝑚𝑖𝑛𝑧 ∈ 𝛺 {||𝑧 − 𝑢||} – is the Euclidean projection of 𝑢 onto a closed convex 

set 𝛺; i.e. the point in closed set 𝛺 to 𝑢. 

v. int(𝛺) = {𝑥 ∈ 𝛺: ||𝑦 − 𝑥|| < 𝜀 ⟹  𝑦 ∈ 𝛺, for some 𝜀 >  0} – is the set of interior points 

of 𝛺, where 𝛺 ⊆ ℜ𝑛. 

vi. 𝛺∗is the set of optimal solutions of an optimization problem whose feasible set is 𝛺. 

vii. ɸ∗- Optimal objective value of an optimization problem whose objective function is ɸ(. ). 

 

3.5 Constraints  
These are logical criteria or conditions that a solution of an optimization problem must satisfy. 

 

4 Iterative Algorithms for Sub-gradient Methods 

 

In this chapter, we considered two iteration procedures as methodologies used for understanding and 

finding of solutions to both linear and nonlinear optimization problems. These methods are: 

  

4.1 The Pure Sub-gradient Method Algorithm 
Consider the integer programing (IP) problem of the form 

(IP)  max{ɸ(u): u ∈ Ω},  

using the following generic procedure: 

 

i.  Choose an initial point u0 ∈ Ω. 

ii.  Construct a sequence of points {uk} ∈ Ω, which eventually converges to an optimal solution 

following the rule: 

uk+1 = PΩ (uk + λks
k) for k = 0, 1, 2, …          (2.1) 

Step 1: Set u0
 for k=0  

uk+1 = PΩ (uk + λks
k), k = 0, 1, 2, … 

u1 = PΩ (u
0 + λ0s

0)    k = 0, 1, 2, … 

Step 2: uk+1 = PΩ (uk + λks
k), k = 1, 2, …  
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u2 = PΩ (u
1 + λ1s

1), k = 1, 2, …  

Step 3: repeat the process continuously until the solution converges to an optimal solution. Where sk 

is a sub-gradient of the concave function ϕ at a point uk
, which is been determined at each iterate point 

until some certain stopping condition, λk > 0 is an appropriately chosen step length and PΩ(.) is the 

Euclidean projection on the feasible set Ω.   

 

4.2 Numerical Solutions 
In this chapter, we will find and discuss of two numerical examples, using the iterative algorithms of 

the stated methods and compare the results of the sub-gradient methods to see their efficiency for 

finding optimum solutions to optimization problems.  

Example 2.1: Let 

𝑓(𝑥)  = max
𝑥∈ℜ

 {2x, x +  2,
5

3
x +  5}        (3.1) 

Then 𝑓 is a piecewise linear concave function given by  

𝑓(𝑥) = {

2𝑥            𝑥 ≤ 1
𝑥 + 2     1 ≤ 𝑥 ≤ 3

5

3
x + 5       x ≥ 3

        (3.2) 

𝑓 is differentiable at every point 𝑥̅ ∈ ℜ \ [1,3]. Hence, for any 𝑥̅ ∉  [1,3] the sub-gradient  𝑠(𝑥̅) of 𝑓 

at 𝑥̅ is given by 𝑠(𝑥̅) = 𝑓ʹ(𝑥) 

That is, 

s(𝑥̅) = { 

2,            𝑥̅ < 1
1,    1 < 𝑥̅ < 3 
5

3
,             𝑥̅ > 3

        (3.3) 

However, at  𝑥̅ = 1 both S1 = 3 and S2 = 1 are sub-gradients of 𝑓. Moreover, any convex combination 

of S1 and S2 is also a sub-gradient of 𝑓 at 𝑥̅ = 1. Similarly, both S2 = 1 and S3 =  
5

3
 as well as any of 

their convex combinations are the sub-gradients of 𝑓 at 𝑥̅ = 3.  

 

Table 1. Solution of the linear concave problem of example 2.1 

 

Input Grid: f(x) = {2x, x+ 2, 
5

3
x + 5} 

 X1 X2 X3 Enter <, >, or 

= 

R H S 

f (x, y) 2x X + 2 5

3
x + 5 

  

Maximize 2.00 1.00 1.67   

Constraint 1 1.00 1.00 3 > = 3.00 

lower Bound 0.10 1.00 3   

Upper Bound 1.00 3.00 300   

Unrestr’d (y/n) n N    

Iteration Values: 

Iteration 1 X1 X2 X3   

Basic LX1 LX2 LX3 SX4 Solutio

n 

z(max) -2.00 -1.00 -1.67 0.00 6.21 

SX4 -1.00 -3.00 -3.00 1.00 9.10 

Lower Bound 0.10 1.00 3.00   

Upper Bound 1.00 3.00 300.00   

Unrestr’d (y/n) n N    
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Iteration 2 X1 X2 X3   

Basic ULX1 LX2 LX3 SX4 Solutio

n 

z(max) 2.00 -1.00 -1.67 0.00 8.01 

SX4 1.00 -3.00 -3.00 1.00 10.00 

Lower Bound 0.10 1.00 3.00   

Upper Bound 1.00 3.00 300.00   

Unrestr’d (y/n) n N    

 

Iteration 3 X1 X2 X3   

Basic ULX1 LX2 ULX3 SX4 Solutio

n 

z(max) 2.00 -1.00 1.67 0.00 504.00 

SX4 1.00 -3.00 3.00 1.00 901.00 

Lower Bound 0.10 1.00 3.00   

Upper Bound 1.00 3.00 300.00   

Unrestr’d (y/n) n N    

 

Iteration 4 X1 X2 X3   

Basic ULX1 ULX2 ULX3 SX4 Solutio

n 

z(max) 2.00 1.00 1.67 0.00 506.00 

SX4 1.00 3.00 3.00 1.00 907.00 

Lower Bound 0.10 1.00 3.00   

Upper Bound 1.00 3.00 300.00   

Unrestr’d (y/n) n N    

 

Iteration 5 X1 X2 X3   

Basic ULX1 ULX2 LX3 SX4 Solutio

n 

z(max) 2.00 1.00 -1.67 0.00 10.01 

SX4 1.00 3.00 -3.00 1.00 16.00 

Lower Bound 0.10 1.00 3.00   

Upper Bound 1.00 3.00 300.00   

Unrestr’d (y/n) n N    

 

Iteration 6 X1 X2 X3   

Basic ULX1 ULX2 LX3 SX4 Solutio

n 

z(max) 2.00 1.00 -1.67 0.00 10.01 

SX4 1.00 3.00 -3.00 1.00 16.00 

Lower Bound 0.10 1.00 3.00   

Upper Bound 1.00 3.00 300.00   

Unrestr’d (y/n) n N    

 

Iteration 7 X1 X2 X3   
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Basic ULX1 ULX2 ULX3 SX4 Solutio

n 

z(max) 2.00 1.00 1.67 0.00 506.00 

SX4 1.00 3.00 3.00 1.00 907.00 

Lower Bound 0.10 1.00 3.00   

Upper Bound 1.00 3.00 300.00   

Unrestr’d (y/n) n N    

Output Summary: Final Solution 

f (x) Value Obj. Coeff. Obj. Value 

Contr 

  

X1: 2x 1.00 2.00 2.00   

X2: x+2 3.00 1.00 3.00   

X3: 
5

3
x + 5 300.00 1.67 501.00   

Constraint R H S Slack-

/Surplus+ 

   

1(<) 3.00 907.00-    

LB-X1: 0.10 0.90+    

UB-X1: 1.00 0.00    

LB-X2: 1.00 2.00+    

UB-X2: 3.00 0.00    

LB-X3: 3.00 297.00+    

UB-X3 300.00 0.00    

* Sensitivity Analysis * 

f (x) Curr Obj. Coeff Min Obj. Coeff Max Obj. 

Coeff 

Reduced Cost 

X1: 2x 2.00 0.00 ∞ -2.00 

X2: x + 2 1.00 0.00 ∞ -1.00 

X3: 
5

3
x + 5 1.67 0.00 ∞ -1.67 

Constraint Curr. R H S Min R H S Max R H S Dual Price 

1(<) 3.00 -∞ 910.00 0.00 

L B: X1 0.10 0.00 1.00 0.00 

U B: X1 1.00 0.00 ∞ 2.00 

L B: X2 1.00 0.00 3.00 0.00 

U B: X2 3.00 0.00 ∞ 1.00 

L B: X3 3.00 0.00 300.00 0.00 

U B: X3 300.00 0.00 ∞ 1.67 

Objective Value (Max): = 506.00 (Iteration 4) 

 

Hence, the pure sub-gradient procedure is best applied to solve these type of non-smooth concave 

problems, because it compute the sub-gradient vector say 𝑠̅ ∈ 𝜕𝜙(𝑥) at each iterate point say 𝑥̅ ∈ Ω 

by fulfilling that Ω = ℜ+
𝑚 for any linear concave but nondifferentiable function and maintaining the 

search direction. 

 

Example 2.2 

Let consider the non-linear constraint optimization problem min
𝑥,𝑦∈ℜ

𝑓(𝑥, 𝑦) defined by   

f (x, y) = (1-x)2 + 100(y – x2)2,  ∀  x, 𝑦 ∈ (1, 2), 
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s. t. x2 + y2 ≤ 2. 

The computation of the results for optimum solutions of the problem, we take the range of the variables 

as:  x ∈ (1, 2),  y ∈ (1, 2). 

 

Table 2 Solution of the non-linear constraint optimization problem of example 2.2 

 

Input Grid: f (x, y) = (1-x)2 + 100(y – x2)2, x2 + y2 ≤ 2, 1 ≤ x ≤ 2, 1 ≤ y ≤ 2. 

 X1 X2 Enter <, >, or = R. H. S. 

f (x, y) (1-x) ^2 100*(y-x^2) ^2   

Minimize 1.00 100.00   

Constraint 1 1.00 1.00 < = 2.00 

lower Bound 1.00 1.00   

Upper Bound 2.00 2.00   

Unrestr’d (y/n) n n   

Iteration Values: 

Iteration 1 (1-x) ^2 100*(y-x^2) ^2   

Basic LX1 LX2 SX3 Solution 

z(max) -1.00 -100.00 0.00 101.00 

SX3 1.00 1.00 1.00 0.00 

Lower Bound 1.00 1.00   

Upper Bound 2.00 2.00   

Unrestr’d (y/n) n n   

 

Iteration 2 (1-x) ^2 100*(y-x^2) ^2   

Basic LX1 LX2 SX3 Solution 

z(max) 99.00 0.00 100.00 101.00 

LX2 1.00 1.00 1.00 0.00 

Lower Bound 1.00 1.00   

Upper Bound 2.00 2.00   

Unrestr’d (y/n) n n   

 

Iteration 3 (1-x) ^2 100*(y-x^2) ^2   

Basic LX1 LX2 SX3 Solution 

z(max) 0.00 -99.00 1.00 101.00 

LX1 1.00 1.00 1.00 0.00 

Lower Bound 1.00 1.00   

Upper Bound 2.00 2.00   

Unrestr’d (y/n) n n   

Output Summary: (Final Solution) 

f (x, y) Value Obj. Coeff. Obj Value 

Contri 

 

X1: (1-x) ^2 1.00 1.00 1.00  

X2: 100*(y-x^2) ^2 1.00 100.00 100.00  

Constraint R H S Slack - / Surplus 

+ 

  

1(<) 2.00 0.00   

LB-X1: (1-x) ^2 1.00 0.00   

UB-X1: (1-x) ^2 2.00 1.00-   
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LB-X2:100*(y-x^2) 

^2 

1.00 0.00   

UB-X2:100*(y-^2) 

^2 

2.00 1.00-   

* Sensitivity Analysis * 

f (x, y) Curr Obj Coeff Min Obj Coeff Max Obj Coeff Reduced Cost 

X1: (1-x) ^2 1.00 -∞ 100.00 -99.00 

X2: 100*(y-x^2) ^2 100.00 1.00 ∞ 0.00 

Constraint Current R H S Min R H S Max R H S Dual Price 

1(<) 2.00 2.00 3.00 100.00 

Lower Bound: X1 1.00 0.00 1.00 -99.00 

Upper Bound: X1 2.00 1.00 ∞ 0.00 

Lower Bound: X2 1.00 0.00 1.00 0.00 

Upper Bound: X2 2.00 1.00 ∞ 0.00 

Objective Value (max): = 101.00 (Iteration 2) 
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