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Abstract 

The Block Hybrid Method is a numerical technique for solving ordinary differential equations (ODEs), particularly 

effective for stiff and oscillatory systems. This paper introduces a new method designed to handle challenges posed by 

equations like the Malthusian Growth Model and Prothero-Robinson equation, which are difficult to solve using 

conventional methods due to stiffness and rapid oscillations. Derived using power series approximation, the method is 

analyzed for order, error constant, consistency, and zero stability, proving to be convergent, consistent, and zero-stable. 

Numerical examples demonstrate its superior accuracy and stability compared to existing methods, making it a valuable 

tool for solving complex initial value problems in real-world applications. 

Keywords: Numerical Methods, Oscillatory Differential Equations, Computational Efficiency, Stability Analysis, Block 

Hybrid Method 

 

 

1 Introduction 

To tackle real-world challenges across engineering, biological sciences, physical sciences, electronics, and other 

disciplines, researchers frequently encounter initial value problems, as noted by [1]. Many practical problems in 

engineering and science are initially formulated as differential equations before resolution. These equations typically 

involve derivatives, establishing a connection between an independent variable, a dependent variable and one or more 

differential coefficients concerning x  [2, 3]. Although discrete hybrid methods have been devised, their superior 

accuracy compared to conventional linear multi-step methods of identical step-size, as highlighted by Lambert in [4], has 

not yet garnered the anticipated level of attention. This study aims to address initial value problems (IVPs) structured as: 

  0)(,),,( yaybxayxfxy       (1.1) 

The Block Hybrid Method is a numerical technique used to solve ordinary differential equations (ODEs), particularly 

stiff systems, with higher accuracy and efficiency. It combines the advantages of both multistep methods and Runge-

Kutta methods, providing a robust solution for a wide range of differential equation problems [4]. The Block Hybrid 

Method offers a versatile and efficient approach to solving ordinary differential equations, especially in scenarios 

involving stiff systems, making it a valuable tool in the numerical analysis toolkit [3, 5]. 

The Malthusian Growth Model, Prothero-Robinson equation and highly stiff oscillatory differential equations are 

important examples of initial value problems (IVPs) in numerical analysis. The Malthusian Growth Model, introduced 

by Thomas Malthus, describes exponential population growth under the assumption of unlimited resources, where the 

rate of change in population is proportional to the current population size [6, 7]. This model is fundamental in 

understanding population dynamics and is often used in ecology and economics. Its simplicity, represented by the first-
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order differential equation  



dt

d
, where   is the population size and   is the growth rate, allows for easy 

analytical solutions. However, more complex biological systems require extensions of this model to capture factors like 

resource limitations or carrying capacities, introducing nonlinearities and complexity into IVP formulations [8, 9]. 

The Prothero-Robinson equation and stiff oscillatory differential equations present significantly more challenging 

problems. The Prothero-Robinson equation highlights the difficulties posed by stiffness, a property of differential 

equations where certain components evolve much faster than others, leading to numerical instabilities [10, 11]. This 

equation is used to test the robustness of numerical methods, especially in systems involving multi-scale phenomena. 

Highly stiff oscillatory differential equations, often encountered in systems involving mechanics, physics and 

engineering, exhibit rapid oscillations that make their numerical solution particularly difficult [12, 13]. Traditional 

numerical methods struggle with accuracy and stability in such cases, necessitating advanced techniques like implicit 

methods or specialized solvers. Together, these models underscore the importance of selecting appropriate methods for 

solving IVPs, particularly when dealing with systems with diverse behaviors such as exponential growth, oscillations, 

and stiffness [14, 15]. 

2 Derivation of the Block Hybrid Method 

In this section, we will utilize the concepts introduced in preceding sections to construct block hybrid method aimed at 

solving first-order initial value problems in oscillatory differential equation expressed in the form (1.1). The power series 

as an approximate solution of the form; 

  





1
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i

i

jhxy            (2.1) 

is consider deriving the method, where m  and n are distinct point of interpolation and collocation [9].  

2.2 Formulation of the Block Hybrid Method  

The power series polynomial (2.1) is consider as an approximate solution of (1.1). 

Differentiate (2.1) once to yield, 
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i  and  xy  is continuously differential. Let the solution of (1.1) be sought on the 

integration interval  ba,  with a constant step-size h  defined by Nnh nn ,,1,0,1    . 

Substituting equation (2.2) into (1.1) gives, 
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We interpolate equation (2.1) at point, 
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Solving (2.4), for 2
3

1
0, 








ii  and replacing back into (2.1) gives a linear block scheme as 
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Evaluating (2.5) at non-interpolating points to gives 
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Evaluating (2.6) at 
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3 Analysis of Basic Properties of the Block Hybrid Method 

The necessary and sufficient conditions for new method and their associated block method are analyzed to establish their 

validity. These properties include; order and error constant, consistency, zero-stability and region of absolute stability. 

3.1 Order and Error Constant 

This subsection establishes the linear operator   hxy i ;  associated with the newly derived method. 

Definition 3.1 

A linear multistep method is of order p if it satisfies the condition  
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The parameter 02 pc  is referred to as the error constant with the local truncation error 

defined as 
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Therefore, according to [13], the new method is of uniform order seven as well as error constant is 

given by 
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3.2 Consistent  

Traditionally, the new method is consistent because the order of the method is order greater than or equal to one [3]. 

 

3.3 Zero Stable 

By definition, the new method is said to be zero stable as 0h  if the roots of the polynomial   0r  satisfy 

  ,110  kRA and those roots with R = 1 must be simple. Hence it’s found as 
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Then, solving for r in  16 rr , 

gives 1,0,0,0,0,0r . Therefore, the method is zero stable [16]. 
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Dahlquist's theorem states that, the new method is convergent and consistency and zero-stability are analyzed and 

fulfilled. 

3.4 Convergence 

 

Theorem 3.1 

Consistency and zero-stability are both required and sufficient conditions for a linear multistep method to be convergent. 

Therefore, the new method is convergent since it is consistent and zero-stable [15].  

3.5 Region of Absolute Stability 

The boundary locus method is used to generate the new method’s stability polynomial [15]. The polynomial is defined as 
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The polynomial is used to plot the region as 

 
Fig. 3.1: Showing the region of stability of new method. 

 

4 Results and Discussions 

This section presents and discusses the results derived from various numerical examples. Additionally, the effectiveness 

of the proposed method is evaluated using four real-world problems, including the Malthusian Growth Model, the 

Prothero-Robinson equation, and other highly stiff oscillatory differential equations. For each case, the approximate 

solutions are compared to numerical benchmarks, and the absolute errors from the new method are contrasted with those 

from existing approaches to assess its accuracy and performance. 
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To evaluate the effectiveness of the developed methods, we present several numerical examples, including the following 

five cases Example 4.1: Malthus Growth Model 

The Malthusian growth model, introduced by British economist Thomas Robert Malthus, is a population growth theory 

that highlights the potential for exponential population increase and its impact on resource availability. Malthus first 

articulated this theory in his 1798 work, An Essay on the Principle of Population. The model suggests that populations 
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consistent rate over time, assuming no limiting factors. In contrast, Malthus argued that food supply increases 

arithmetically, by a fixed amount each period, resulting in a mismatch between population growth and resource 

availability. According to Malthus, this imbalance ultimately leads to natural checks such as famine, war, or disease, 

which reduce the population. (Oluwaseun and Zurni (2022). 

The Malthusian growth model can be described using a simple differential equation: 

 ,1,0,  xkp
dx

dy
          (4.1) 

with the exact solution given by  

   xxy 292506795661.0exp100         (4.2) 

Initial condition    1000 y  with  292506795661.0k  and 1.0h  

Source: [7, 8]. 

Example 4.2: (Prothero-Robinson Equation) 

Take into account the Prothero-Robinson oscillatory differential equation, which has been addressed by [16, 17], 

formulated as follows: 

    00,1,sin'  yyxyy        (4.3) 

Which has the exact solution as  

  xxy sin            (4.4) 

Example 4.3: Consider the differential equation 

       00,01.0,cos200sin  uhvuv
dv

du
      (4.5) 

with the exact solution 

    vevvu 200cos 
     (4.6) 

Source: [17, 18] 

Example 4.4: Consider the oscillatory differential equation  

    20,01.0,110
2

 uhu
dv

du
      (4.7) 

with the exact solution 

 
v

vu
101

1
1




     (4.8) 

Source: [18, 19] 

Example 4.5: Consider the Highly stiff oscillatory differential equation 

  10,1.0,   uhu
dv

du
      (4.9) 

with the exact solution 

  )exp( vvu 
     (4.10) 

Source: [20, 21)] 
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Table 4.1: The results of example 4.1 with [7, 8] 

x Exact Solution Computed Solution Absolute 

Errors 

Error in [7] Error in [8] 

0.100 102.53847998347329794000 102.53847998347329790000 4.0000(-17) 1.6677(-08) 0.0000(00) 

0.200 105.14139877321154182000 105.14139877321154182000 0.0000(00) 4.4003(-10) 0.0000(00) 

0.300 107.81039213541335645000 107.81039213541335642000 3.0000(-17) 1.7117(-08) 0.0000(00) 

0.400 110.54713735987489512000 110.54713735987489512000 0.0000(00) 8.8005(-10) 0.0000(00) 

0.500 113.35335431405805132000 113.35335431405805129000 3.0000(-17) 1.7557(-08) 1.4211(-14) 

0.600 116.23080652391598100000 116.23080652391598099000 1.0000(-17) 1.3201(-09) 1.4211(-14) 

0.700 119.18130228215516429000 119.18130228215516425000 4.0000(-17) 1.7997(-08) 1.4211(-14) 

0.800 122.20669578463047796000 122.20669578463047795000 1.0000(-17) 1.7601(-09) 0.0000(00) 

0.900 125.30888829558742918000 125.30888829558742917000 1.0000(-17) 1.8437(-08) 1.4211(-14) 

1.000 128.48982934248383035000 128.48982934248383034000 1.0000(-17) 2.2001(-09) 0.0000(00) 

 
Table 4.2: The results of application problem 4.2 with [16, 17] 
x Exact Solution Computed Solution Absolute 

Errors 

Error in 

[16] 

Error in 

[17] 

0.100 0.09983341664682815231 0.09983341664682691151 1.2408(-15) 1.4530(-11) 1.3422(-11) 

0.200 0.19866933079506121546 0.19866933079506177666 5.6120(-16) 1.6211(-11) 2.1464(-11) 

0.300 0.29552020666133957511 0.29552020666133611456 3.4606(-15) 2.1310(-11) 3.2359(-11) 

0.400 0.38941834230865049167 0.38941834230865202176 1.5301(-15) 1.3799(-11) 4.1877(-11) 

0.500 0.47942553860420300027 0.47942553860419784705 5.1532(-15) 2.7441(-11) 4.6377(-11) 

0.600 0.56464247339503535720 0.56464247339503814732 2.7901(-15) 1.1114(-11) 5.3368(-11) 

0.700 0.64421768723769105367 0.64421768723768473182 6.3219(-15) 2.8657(-11) 5.8936(-11) 

0.800 0.71735609089952276163 0.71735609089952698884 4.2272(-15) 1.9218(-10) 6.0221(-11) 

0.900 0.78332690962748338846 0.78332690962747641090 6.9776(-15) 1.2392(-10) 6.3342(-11) 

1.000 0.84147098480789650665 0.84147098480790223848 5.7318(-15) 1.4711(-10) 6.5059(-11) 

 

Table 4.3: The results of application problem 4.3 with [17, 18] 

x Exact Solution Computed Solution Absolute 

Errors 

Error in [17] Error in [18] 

0.001 0.18126874692477177712 0.18126874692205980800 2.7120(-12) 6.5812(-06) 3.7249(-10) 

0.002 0.32967795396412439246 0.32967795396502736584 9.0297(-13) 2.9379(-06) 5.2169(-10) 

0.003 0.45118386391042716158 0.45118386390934856636 1.0786(-12) 9.3961(-05) 6.7870(-10) 

0.004 0.55066303589223450724 0.55066303589344506955 1.2106(-12) 1.1305(-05) 7.6010(-10) 

0.005 0.63210805885482676508 0.63210805885459932337 2.2744(-12) 7.9107(-06) 7.4126(-10) 

0.006 0.69878778814058064233 0.69878778814179783856 1.2172(-12) 1.0313(-05) 7.4495(-10) 

0.007 0.75337853615825529977 0.75337853615843502633 1.7973(-13) 1.0426(-05) 7.2211(-10) 

0.008 0.79807148217492301264 0.79807148217601089409 1.0879(-12) 7.7981(-05) 6.5649(-10) 

0.009 0.83466061205144457875 0.83466061205178772359 3.4315(-13) 8.4900(-05) 6.1326(-10) 

0.01 0.86461471717914105002 0.86461471718005258589 9.1150(-13) 8.0388(-05) 5.6367(-10) 
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Table 4.4: The results of application problem 4.4 with [18, 19] 

x Exact Solution Computed Solution Absolute 

Errors 

Error in [18] Error in [19] 

0.001 1.90909090884750640830 1.90909090889090909090 4.3403(-11) 2.4025(-08) 1.0700(-05) 

0.002 1.83333333337241953740 1.83333333333333333330 3.9086(-11) 3.1560(-08) 2.3800(-05) 

0.003 1.76923076920944483900 1.76923076923076923080 2.1324(-11) 3.2631(-08) 4.5100(-05) 

0.004 1.71428571432193859870 1.71428571428571428570 3.6224(-11) 3.1192(-08) 6.2000(-04) 

0.005 1.66666666668304290430 1.66666666666666666670 1.6376(-11) 2.8877(-08) 8.8400(-04) 

0.006 1.62500000002955801560 1.62500000000000000000 2.9558(-11) 2.6370(-08) 1.0300(-03) 

0.007 1.58823529413888054590 1.58823529411764705880 2.1234(-11) 2.3953(-08) 1.2700(-03) 

0.008 1.55555555557943834040 1.55555555555555555560 2.3883(-11) 2.1734(-08) 1.5300(-03) 

0.009 1.52631578949329163390 1.52631578947368421050 1.9607(-11) 1.9740(-08) 1.7500(-03) 

0.010 1.50000000001952055900 1.50000000000000000000 1.9521(-11) 1.7969(-08) 1.8100(-03) 

 
Table 4.5: The results of application problem 4.5 with [20, 21] 

x Exact Solution Computed Solution Absolute 

Errors 

Error in [20] Error in 

[21] 

0.100 0.90483741803595957316 0.90483741803596084590 1.2727(-15) 9.0730(-12) 5.0000(-10) 

0.200 0.81873075307798185867 0.81873075307798400161 2.1429(-15) 1.1768(-11) 5.0000(-10) 

0.300 0.74081822068171786607 0.74081822068170938478 8.4813(-15) 2.3144(-11) 8.0000(-10) 

0.400 0.67032004603563930074 0.67032004603564280973 3.5090(-15) 2.8440(-11) 7.0000(-10) 

0.500 0.60653065971263342360 0.60653065971262806724 5.3564(-15) 3.1815(-11) 1.1000(-09) 

0.600 0.54881163609402643263 0.54881163609403074200 4.3094(-15) 3.4927(-11) 1.1000(-09) 

0.700 0.49658530379140951470 0.49658530379140642905 3.0857(-15) 3.6582e-11 1.1000(-09) 

0.800 0.44932896411722159143 0.44932896411722629572 4.7043(-15) 3.8127(-11) 1.0000e-09 

0.900 0.40656965974059911188 0.40656965974059764972 1.4622(-15) 3.8576(-11) 1.0000e-09 

1.000 0.36787944117144232160 0.36787944117144713602 4.8144(-15) 3.9020(-11) 1.0000(-09) 

 

 

4.3 Discussion and conclusion  

This study introduces the use power series polynomial to derive the new method for solving various real-life problems in 

form of first-order stiff initial value problems. The new method were focused on their basic properties such as order, 

error constant, consistency, zero-stability and stability regions. The methods were applied to real-life problems, and 

results from tables 4.1 to 4.5. In this study, we have applied the new method on five numerical examples. Example 4.1 is 

the Malthus growth model and the results are presented in Table 4.1. These results are compared with those of [7, 8]. It is 

evident that the new method perform better than the methods proposed by [7, 8]. Example 4.2 involves the Prothero 

differential equation, which was analyzed using the new method. The comparisons of the results are shown in Table 4.2, 

alongside the solutions provided by [16, 17]. According to Table 4.2, the new method exhibit better convergence than the 

methods of [16, 17]. When solving the oscillatory differential equation in Example 4.3, the new method demonstrates 

faster convergence compared to the existing methods of [17, 18] for similar examples. For the oscillatory differential 

equation in Example 4.4, the new method outperform the methods of [18, 19] when solving similar examples, as shown 

in Table 4.4. Finally, Example 4.5 deals with another oscillatory differential equation. The results of solving Example 

4.5 using the methods of [20, 21] are displayed in Table 4.5. 
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