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Abstract

The Block Hybrid Method is a numerical technique for solving ordinary differential equations (ODEs), particularly
effective for stiff and oscillatory systems. This paper introduces a new method designed to handle challenges posed by
equations like the Malthusian Growth Model and Prothero-Robinson equation, which are difficult to solve using
conventional methods due to stiffness and rapid oscillations. Derived using power series approximation, the method is
analyzed for order, error constant, consistency, and zero stability, proving to be convergent, consistent, and zero-stable.
Numerical examples demonstrate its superior accuracy and stability compared to existing methods, making it a valuable
tool for solving complex initial value problems in real-world applications.

Keywords: Numerical Methods, Oscillatory Differential Equations, Computational Efficiency, Stability Analysis, Block
Hybrid Method

1 Introduction

To tackle real-world challenges across engineering, biological sciences, physical sciences, electronics, and other
disciplines, researchers frequently encounter initial value problems, as noted by [1]. Many practical problems in
engineering and science are initially formulated as differential equations before resolution. These equations typically
involve derivatives, establishing a connection between an independent variable, a dependent variable and one or more
differential coefficients concerning X [2, 3]. Although discrete hybrid methods have been devised, their superior
accuracy compared to conventional linear multi-step methods of identical step-size, as highlighted by Lambert in [4], has
not yet garnered the anticipated level of attention. This study aims to address initial value problems (I\VVPs) structured as:

y(x)=f(x,y), a<x<b, y@-=y, (L1)

The Block Hybrid Method is a numerical technique used to solve ordinary differential equations (ODEs), particularly
stiff systems, with higher accuracy and efficiency. It combines the advantages of both multistep methods and Runge-
Kutta methods, providing a robust solution for a wide range of differential equation problems [4]. The Block Hybrid
Method offers a versatile and efficient approach to solving ordinary differential equations, especially in scenarios
involving stiff systems, making it a valuable tool in the numerical analysis toolkit [3, 5].

The Malthusian Growth Model, Prothero-Robinson equation and highly stiff oscillatory differential equations are
important examples of initial value problems (IVPs) in numerical analysis. The Malthusian Growth Model, introduced
by Thomas Malthus, describes exponential population growth under the assumption of unlimited resources, where the
rate of change in population is proportional to the current population size [6, 7]. This model is fundamental in
understanding population dynamics and is often used in ecology and economics. Its simplicity, represented by the first-
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order differential equation d_p = Kkp, where p is the population size and x is the growth rate, allows for easy
analytical solutions. However, more complex biological systems require extensions of this model to capture factors like
resource limitations or carrying capacities, introducing nonlinearities and complexity into VP formulations [8, 9].

The Prothero-Robinson equation and stiff oscillatory differential equations present significantly more challenging
problems. The Prothero-Robinson equation highlights the difficulties posed by stiffness, a property of differential
equations where certain components evolve much faster than others, leading to numerical instabilities [10, 11]. This
equation is used to test the robustness of numerical methods, especially in systems involving multi-scale phenomena.
Highly stiff oscillatory differential equations, often encountered in systems involving mechanics, physics and
engineering, exhibit rapid oscillations that make their numerical solution particularly difficult [12, 13]. Traditional
numerical methods struggle with accuracy and stability in such cases, necessitating advanced techniques like implicit
methods or specialized solvers. Together, these models underscore the importance of selecting appropriate methods for
solving 1VPs, particularly when dealing with systems with diverse behaviors such as exponential growth, oscillations,
and stiffness [14, 15].

2 Derivation of the Block Hybrid Method

In this section, we will utilize the concepts introduced in preceding sections to construct block hybrid method aimed at
solving first-order initial value problems in oscillatory differential equation expressed in the form (1.1). The power series
as an approximate solution of the form;

m+n-1

y(x)=h> a7 @.1)
i=0

is consider deriving the method, where M and N are distinct point of interpolation and collocation [9].
2.2 Formulation of the Block Hybrid Method

The power series polynomial (2.1) is consider as an approximate solution of (1.1).

Differentiate (2.1) once to yield,

dy m+n—% i1
i 20 ax (2.2)

Where ¢ €R for j — O(ljz and y(x) is continuously differential. Let the solution of (1.1) be sought on the

integration interval [a, b] with a constant step-size h definedbyh=y,.,—7,,n=0,1---,N.
Substituting equation (2.2) into (1.1) gives,

m+n-1

f(x,y)=h Ziaj;(i’l
i—0

(2.3)
. . . 1 . .
We interpolate equation (2.1) at point, X, ,, M= § and collocate equation (2.3) at points
X ns N =0, %, %,1, %, g, 2 to give,
Ay=U (2.4)
Where

.
A=[ao,al,az,as,a4,a5,a6,a7]T,U :|:y 1 o, f 1 f 2 foas fn+4’ fn+§’ foiz }
3 3 3 3
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n0+5 n+5 n2+g n3+5 n+g n5+5 n6+5
0 1zn+l zlm—l 37(n+1 4Zn+1 5)(n+1 6%n+1 7}(n-*—l
0

2

1y", 2x 4 317, 4)(34 Sx” ., 6)(54 77(64

n+— n+— n+— n+— n+— n+— n+—
3 3 3 3 3 3 3
0 1 2 3 4 5 6
5 5 5 5 5 5 5
0 1y 2y 3x 4y Sy 6x Ty
n+— n+— n+— n+— n+— n+— n+—
3 3 3 3 3 3 3

0 1Zr(1)+l 2/1’n+l 3Z§+1 4Zr?+l SZnJrl 6/1/r?+1 7/1/r?+l _

Solving (2.4), for ai,izo[%jz and replacing back into (2.1) gives a linear block scheme

B, + . OF ,+5,0OF ,

3 *g 2.5)
y@©)=a, @y, +h 3 3 (
% n+% +/81(t)fn+l +ﬂi(t)fn+i + E(t)fn+§ _|_ﬂ2(t)fn+2
3 3 3 3
Where
a, =1
3
Bo = 1 (— 19087 + 66918t —93501t* + 64476t — 21870t* + 2916t° )(3t —1)?
181440
B, = _77516 5 (— 2713 — 8139t + 43623t2 — 664471° + 4704t* —16281t° + 2187t° (3t —1)
3
B, - @ (15487 + 92922t — 262251t + 243756t° — 98010t* +145801t° |3t — 1)’
3
B =— o ;40 (+ 2344 + 14064t —50112t% + 52812t> — 23085t* + 3645t° )(3t -1)
B, =~ (6737 + 40422t — 15830t* + 183276t° — 86670t* +14580t° )3t — 1)’
4~ 60480
By =——+ (263 +1578t — 6507t + 7992t° — 4050t* + 720t° )3t — 1)’
ST 7560
B =1 (863 + 5178t — 22059t + 28188t° —15066t* + 2916t° |3t —1)?
181440
for ¢ _ (=24,

h
Evaluating (2.5) at non-interpolating points to gives
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Y=Y 1tV fo+vo fn+1 +Wos fn+g +Wos Fris +Wos fn+i +W¥os fn+§ o fo
3 3 3 3 3
Y 2=Y 1tVu fo+yo, fﬂé T Wi fmg W fhn T Wis fmﬁ +¥ie fn+§ +yif
3 3 3 3 3 3
Yo=Y 1 +¥Wafo+waf (+wpf s +y,fia+wesf syt o +wofln 26
n+3 n+3 n+3 n+3 n+ ( . )
yn 4= yn W s fn 1 +l//33fn 2 T Waa o +vss fn 4 TVse fn s TWarfoiz
+3 *3 *3 +3 +3 3
Y s=Y 1+vafi vt s +rwef vy i rvest s vt s vt
n+s n+s n+s n+g n+g n+
yn+1:y 1+‘//51fn+l//52f 1+l//53f 2+W54fn+l+l//55f 4+W56f 5+l//57fn+2
n+s n+s n+3 g n+
Evaluating (2.6) at ¢ — 1' E 1, ﬂ’ E’ 2 | points to gives discrete block scheme of the form:
33 33
Y 1=Vt Q) f, +Qy, fm; +Qy, fmg +Q f L, + Qg fnﬁ +Qy fn+§ +Qp, f
3 3 3 3
Y 2=Yat Q,f,+Q,, fm; +Qy fmg +Q,, f + Qs fmi + Q0 fn+§ +Q, 1
3 3 3 3 3
Yoir = Yo +Qq f + Qg fn+1 +Qq fmg +Qg, f L + Qs fn+i + Q4 fn+§ +Qq, f, (2.7)
3 3 3 3
yn+i = yn + Q41 fn + QAZ fn+1 + Q43 fn+g + Q44 fn+1 + QAS fn+i + Q46 fn+§ + Q47 fI’H—2
3 3 3 3
yﬂ+§ = yn + Qsl fn + Q52 fn+1 + Q53 fn+g + QS4 fn+1 + QS5 fn+£ + QSG fn+§ + Qs7 fn+2
3 3 3 3 3
yn+1 = yn + Qﬁl fn + QGZ fn+1 + QG3 fn+z + Q64 fn+1 + Q65 fI’H»ﬂ + QGG fn+§ + QG7 fI'H»Z
3 3 3 3

3 Analysis of Basic Properties of the Block Hybrid Method
The necessary and sufficient conditions for new method and their associated block method are analyzed to establish their

validity. These properties include; order and error constant, consistency, zero-stability and region of absolute stability.
3.1 Order and Error Constant

This subsection establishes the linear operator K[y(xi);h] associated with the newly derived method.
Definition 3.1

A linear multistep method is of order p if it satisfies the condition

Cp=C =C,=Cy=+-=C,=Cp,, :O,Cp+2 =0,
Where
k
o=
j=0
k -
Cl=Z(JOt,-—ﬂj)

(3.1)

S1 ., 1 (ipa
- nl i i :23 1
v ;{plja‘ (p—l)!(‘ Bl p=2.3 - a+

American University of Nigeria, 2" International Conference Proceeding, November 6-9, 2024, e-ISSN: 3027-0650




The parameter c,, #0 is referred to as the error constant with the local truncation error

defined as X, =¢,,,h?2yP2(x,)+c, "2y (x )+c, ,hP*yP ¥ (x, )+0(h"*)

i@_y ihwlyﬂj{Z?lS[lj @(2) 586 (1)_ﬂ(i)+£(§j_ 863 (2)}

i ! 75603/ 60480\3) 2835 60480\ 3/) 7560\3) 181440

2 ]

*[Ej =hit 94 (1) 11 (2) 332 . 269 (4) 22(5) 37
— Y- S i e ) e o () S Y

% TR ; oo [189[3} 3780[3J 2835() 3780(3j+945[3) 11340()}
= (1) =it 27[ j 387 (2) 34 243 (4) 9 [5) 29

oy - e ) I U P
D e A BT € 15" 22003) " 280\3) 6720 ¥

Y

EJ = hit o 464[ ) 128[ ] 1504 58 [4] 16 (5] 8

— Y- aad ) 2 222

2 2T s 3) P as 3 285 U053 " 0a5 \3) 2838 0

5
- §j 2 hit . F 275 (1) 2125 (2} 250 3875[ ] 235 (5) 275

By - e e ) e L s [ PR Y 1
X5 % 7| 512\3) 12006 \3) " 567 12006 3, 15123 ) 36288 O
z (2) hit 18[1J 9 [ZJ 68 9 (4) 18[5) 41

L = 1)-— =2
% T ; TR 3) 14003 105() 140\3) 35(3 420()
Therefore, according to [13], the new method is of uniform order seven as well as error constant is
given by
1.5460 x10°%°
1.1321x107
1.3677 x10°%°
1.1218x10°%

1.5926 x107%
1.2661x107%

3.2  Consistent
Traditionally, the new method is consistent because the order of the method is order greater than or equal to one [3].

3.3 Zero Stable
By definition, the new method is said to be zero stable as h — O if the roots of the polynomial ﬂ(r)z 0 satisfy
‘[Z AORk’l]‘ <4,and those roots with R = 1 must be simple. Hence it’s found as

(1 000 0 0] [0o0O0OTO OT1] r oo0oo0oo0 -1

01 0 0 0O 0 00 O 01 0Or 000 -1

0 01 00O 0 00 O 01 0 0°r 00 -1 5
z(r)=|r - = =r°(r-1)

0 00100 0 00 0 01 00O0Tr o -1

0 00O 10 0 00 0 01 0 0 0O -1

000001/ 000001 (00000 r-1

6
Then, solving for rin I (I’ )
gives r =0, 0,0,0, 0, 1. Therefore, the method is zero stable [16].
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Dahlquist's theorem states that, the new method is convergent and consistency and zero-stability are analyzed and
fulfilled.
3.4 Convergence

Theorem 3.1

Consistency and zero-stability are both required and sufficient conditions for a linear multistep method to be convergent.
Therefore, the new method is convergent since it is consistent and zero-stable [15].

35 Region of Absolute Stability

The boundary locus method is used to generate the new method’s stability polynomial [15]. The polynomial is defined as

ﬁ(w):(—iw5 Jriwﬁjh6 +(7LW5 ,Lwejhs +(fﬁw5 +£W6jh4
5103 5103 2430 2430 1215 1215

+[—lw5 —lwejh3 +(—§w5 +§W6)h2 +(W5 +W6)h+W5 +w®
54 54 54 54 (3.2)

The polynomial is used to plot the region as
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Fig. 3.1: Showing the region of stability of new method.
4 Results and Discussions

This section presents and discusses the results derived from various numerical examples. Additionally, the effectiveness
of the proposed method is evaluated using four real-world problems, including the Malthusian Growth Model, the
Prothero-Robinson equation, and other highly stiff oscillatory differential equations. For each case, the approximate
solutions are compared to numerical benchmarks, and the absolute errors from the new method are contrasted with those
from existing approaches to assess its accuracy and performance.

4.2 Numerical Examples

To evaluate the effectiveness of the developed methods, we present several numerical examples, including the following
five cases Example 4.1: Malthus Growth Model

The Malthusian growth model, introduced by British economist Thomas Robert Malthus, is a population growth theory
that highlights the potential for exponential population increase and its impact on resource availability. Malthus first
articulated this theory in his 1798 work, An Essay on the Principle of Population. The model suggests that populations
grow exponentially when resources are plentiful, leading to a scenario where the population size can double at a
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consistent rate over time, assuming no limiting factors. In contrast, Malthus argued that food supply increases
arithmetically, by a fixed amount each period, resulting in a mismatch between population growth and resource
availability. According to Malthus, this imbalance ultimately leads to natural checks such as famine, war, or disease,
which reduce the population. (Oluwaseun and Zurni (2022).

The Malthusian growth model can be described using a simple differential equation:

dy

—Z =kp, xe0,1], 4.1
5~ o xelo]] (4.1)
with the exact solution given by

y(x)=100exp(0.2506795661 29x) (4.2)

Initial condition y(0)=100 with k =0.2506795661 29 and h=0.1

Source: [7, 8].

Example 4.2: (Prothero-Robinson Equation)

Take into account the Prothero-Robinson oscillatory differential equation, which has been addressed by [16, 17],
formulated as follows:

y'=®(y-sinx)-y,®=-1y(0)=0 (4.3)
Which has the exact solution as

y(x)=sin x (4.4)
Example 4.3: Consider the differential equation

% = —sin(v)—200(u —cos(v)), h = 0.01, u(0)=0 (4.5)

with the exact solution
u(v)=cos(v)—e "

Source: [17, 18]
Example 4.4: Consider the oscillatory differential equation

% =-10(u—-1)°,h=0.01,u(0)=2 4.7)

(4.6)

with the exact solution

W) =1+ oy 48)

Source: [18, 19]
Example 4.5: Consider the Highly stiff oscillatory differential equation
du

E:_,,yu,hzo.l,u(o):l/ml (4.9)

with the exact solution
u(v) = exp(—-v)

Source: [20, 21)]

(4.10)
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Table 4.1: The results of example 4.1 with [7, 8]

X Exact Solution Computed Solution Absolute Errorin[7]  Errorin [8]
Errors

0.100 102.53847998347329794000 102.53847998347329790000 4.0000(-17) 1.6677(-08) 0.0000(00)
0.200 105.14139877321154182000 105.14139877321154182000 0.0000(00)  4.4003(-10) 0.0000(00)
0.300 107.81039213541335645000 107.81039213541335642000 3.0000(-17) 1.7117(-08) 0.0000(00)
0.400 110.54713735987489512000 110.54713735987489512000 0.0000(00)  8.8005(-10) 0.0000(00)
0.500 113.35335431405805132000 113.35335431405805129000 3.0000(-17)  1.7557(-08) 1.4211(-14)
0.600 116.23080652391598100000 116.23080652391598099000 1.0000(-17)  1.3201(-09) 1.4211(-14)
0.700 119.18130228215516429000 119.18130228215516425000 4.0000(-17) 1.7997(-08) 1.4211(-14)
0.800 122.20669578463047796000 122.20669578463047795000 1.0000(-17) 1.7601(-09) 0.0000(00)
0.900 125.30888829558742918000 125.30888829558742917000 1.0000(-17)  1.8437(-08) 1.4211(-14)
1.000 128.48982934248383035000 128.48982934248383034000 1.0000(-17)  2.2001(-09) 0.0000(00)
Table 4.2: The results of application problem 4.2 with [16, 17]

X Exact Solution Computed Solution Absolute Error in Error in

Errors [16] [17]

0.100 0.09983341664682815231 0.09983341664682691151  1.2408(-15) 1.4530(-11) 1.3422(-11)

0.200 0.19866933079506121546 0.19866933079506177666 5.6120(-16) 1.6211(-11) 2.1464(-11)

0.300 0.29552020666133957511 0.29552020666133611456  3.4606(-15) 2.1310(-11) 3.2359(-11)

0.400 0.38941834230865049167 0.38941834230865202176  1.5301(-15) 1.3799(-11) 4.1877(-11)

0.500 0.47942553860420300027 0.47942553860419784705 5.1532(-15) 2.7441(-11) 4.6377(-11)

0.600 0.56464247339503535720 0.56464247339503814732 2.7901(-15) 1.1114(-11) 5.3368(-11)

0.700 0.64421768723769105367 0.64421768723768473182  6.3219(-15) 2.8657(-11) 5.8936(-11)

0.800 0.71735609089952276163 0.71735609089952698884  4.2272(-15) 1.9218(-10) 6.0221(-11)

0.900 0.78332690962748338846 0.78332690962747641090 6.9776(-15) 1.2392(-10)  6.3342(-11)

1.000 0.84147098480789650665 0.84147098480790223848 5.7318(-15) 1.4711(-10) 6.5059(-11)

Table 4.3: The results of application problem 4.3 with [17, 18]

X Exact Solution Computed Solution Absolute Errorin [17]  Error in [18]
Errors
0.001 0.18126874692477177712 0.18126874692205980800 2.7120(-12) 6.5812(-06)  3.7249(-10)
0.002 0.32967795396412439246 0.32967795396502736584 9.0297(-13) 2.9379(-06)  5.2169(-10)
0.003 0.45118386391042716158 0.45118386390934856636 1.0786(-12) 9.3961(-05)  6.7870(-10)
0.004 0.55066303589223450724 0.55066303589344506955 1.2106(-12) 1.1305(-05)  7.6010(-10)
0.005 0.63210805885482676508 0.63210805885459932337 2.2744(-12)  7.9107(-06)  7.4126(-10)
0.006 0.69878778814058064233 0.69878778814179783856 1.2172(-12) 1.0313(-05)  7.4495(-10)
0.007 0.75337853615825529977 0.75337853615843502633 1.7973(-13)  1.0426(-05)  7.2211(-10)
0.008 0.79807148217492301264 0.79807148217601089409 1.0879(-12) 7.7981(-05)  6.5649(-10)
0.009 0.83466061205144457875 0.83466061205178772359 3.4315(-13)  8.4900(-05)  6.1326(-10)
0.01 0.86461471717914105002 0.86461471718005258589 9.1150(-13) 8.0388(-05) 5.6367(-10)
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Table 4.4: The results of application problem 4.4 with [18, 19]

X Exact Solution Computed Solution Absolute Error in [18]  Error in [19]
Errors
0.001 1.90909090884750640830 1.90909090889090909090 4.3403(-11) 2.4025(-08)  1.0700(-05)
0.002 1.83333333337241953740 1.83333333333333333330 3.9086(-11) 3.1560(-08)  2.3800(-05)
0.003 1.76923076920944483900 1.76923076923076923080 2.1324(-11) 3.2631(-08)  4.5100(-05)
0.004 1.71428571432193859870 1.71428571428571428570 3.6224(-11) 3.1192(-08)  6.2000(-04)
0.005 1.66666666668304290430 1.66666666666666666670 1.6376(-11) 2.8877(-08)  8.8400(-04)
0.006 1.62500000002955801560 1.62500000000000000000 2.9558(-11) 2.6370(-08)  1.0300(-03)
0.007 1.58823529413888054590 1.58823529411764705880 2.1234(-11) 2.3953(-08)  1.2700(-03)
0.008 1.55555555557943834040 1.55555555555555555560  2.3883(-11) 2.1734(-08)  1.5300(-03)
0.009 1.52631578949329163390 1.52631578947368421050 1.9607(-11) 1.9740(-08)  1.7500(-03)
0.010 1.50000000001952055900 1.50000000000000000000 1.9521(-11) 1.7969(-08)  1.8100(-03)
Table 4.5: The results of application problem 4.5 with [20, 21]
X Exact Solution Computed Solution Absolute Errorin [20]  Error in
Errors [21]
0.100 0.90483741803595957316 0.90483741803596084590  1.2727(-15)  9.0730(-12)  5.0000(-10)
0.200 0.81873075307798185867 0.81873075307798400161  2.1429(-15) 1.1768(-11)  5.0000(-10)
0.300 0.74081822068171786607 0.74081822068170938478  8.4813(-15) 2.3144(-11)  8.0000(-10)
0.400 0.67032004603563930074 0.67032004603564280973  3.5090(-15)  2.8440(-11)  7.0000(-10)
0.500 0.60653065971263342360 0.60653065971262806724  5.3564(-15)  3.1815(-11)  1.1000(-09)
0.600 0.54881163609402643263 0.54881163609403074200  4.3094(-15)  3.4927(-11)  1.1000(-09)
0.700  0.49658530379140951470  0.49658530379140642905  3.0857(-15)  3.6582e-11 1.1000(-09)
0.800 0.44932896411722159143  0.44932896411722629572  4.7043(-15)  3.8127(-11)  1.0000e-09
0.900 0.40656965974059911188 0.40656965974059764972  1.4622(-15) 3.8576(-11)  1.0000e-09
1.000 0.36787944117144232160 0.36787944117144713602  4.8144(-15)  3.9020(-11)  1.0000(-09)
4.3  Discussion and conclusion

This study introduces the use power series polynomial to derive the new method for solving various real-life problems in
form of first-order stiff initial value problems. The new method were focused on their basic properties such as order,
error constant, consistency, zero-stability and stability regions. The methods were applied to real-life problems, and
results from tables 4.1 to 4.5. In this study, we have applied the new method on five numerical examples. Example 4.1 is
the Malthus growth model and the results are presented in Table 4.1. These results are compared with those of [7, 8]. It is
evident that the new method perform better than the methods proposed by [7, 8]. Example 4.2 involves the Prothero
differential equation, which was analyzed using the new method. The comparisons of the results are shown in Table 4.2,
alongside the solutions provided by [16, 17]. According to Table 4.2, the new method exhibit better convergence than the
methods of [16, 17]. When solving the oscillatory differential equation in Example 4.3, the new method demonstrates
faster convergence compared to the existing methods of [17, 18] for similar examples. For the oscillatory differential
equation in Example 4.4, the new method outperform the methods of [18, 19] when solving similar examples, as shown
in Table 4.4. Finally, Example 4.5 deals with another oscillatory differential equation. The results of solving Example
4.5 using the methods of [20, 21] are displayed in Table 4.5.
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